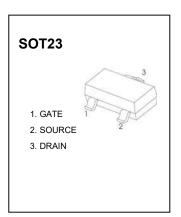


P-Channel 20-V(D-S) MOSFET SOT-23


FEATURE

TrenchFET Power MOSFET

APPLICATIONS

x Load Switch for Portable Devices

DC/DC Converter

MARKING: A1SHB

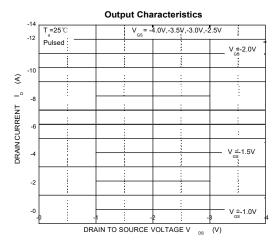
Maximum ratings (Ta=25℃ unless otherwise noted)

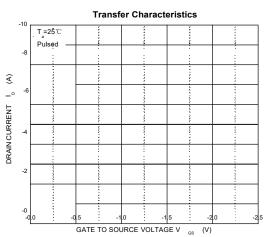
Parameter	Symbol	Value	Unit	
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage	V _{GS}	±8	ď	
Continuous Drain Current	ID	-2.8		
Pulsed Drain Current	I _{DM}	-10	A	
Continuous Source-Drain Diode Current	Is	-0.72		
Maximum Power Dissipation	PD	0.35	W	
Thermal Resistance from Junction to Ambient(t ≤5s)	$R_{\theta JA}$	357	°C/W	
Junction Temperature	TJ	150		
Storage Temperature	T _{stg}	-55 ~+150	_ ი	

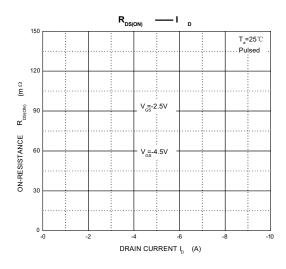
Electrical characteristics (Ta=25°C unless otherwise noted)

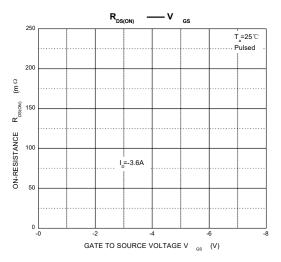
Parameter	Symbol	Test Condition	Min	Тур	Max	Units	
Static			•	•			
Drain-source breakdown voltage	V(BR)DSS	V _G S = 0V, I _D =-250µA	-20				
Gate-source threshold voltage	VGS(th)	V _{DS} =V _{GS} , I _D =-250μA			-1	V	
Gate-source leakage	I _{GSS}	V _{DS} =0V, V _{GS} =±8V			±100	nA	
Zero gate voltage drain current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	μΑ	
Drain-source on-state resistance ^a	RDS(on)	V _{GS} =-4.5V, I _D =-2.8A		0.090	0.112		
		V _{GS} =-2.5V, I _D =-2.0A		0.110	0.142	Ω	
Forward transconductance ^a	g _{fs}	V _{DS} =-5V, I _D =-2.8A		6.5		S	
Dynamic ^b					•	•	
Input capacitance	C _{iss}	V _{DS} =-10V,V _{GS} =0V,f =1MHz		405		pF	
Output capacitance	Coss			75			
Reverse transfer capacitance	C _{rss}			55			
Total gate charge	0	V _{DS} =-10V,V _{GS} =-4.5V,I _D =-3A		5.5	10	nC	
	Qg	V _{DS} =-10V,V _{GS} =-2.5V,I _D =-3A		3.3	6		
Gate-source charge	Q _{gs}			0.7			
Gate-drain charge	Q_{gd}			1.3			
Gate resistance	R_g	f=1MHz		6.0		Ω	
Turn-on delay time	td(on)	V _{DD} =-10V, R _L =10Ω, I _D =-1A,		11	20		
Rise time	tr			35	60	ns	
Turn-off delay time	td(off)			30	50		
Fall time	t f	V_{GEN} =-4.5V,Rg=1 Ω		10	20		
Drain-source body diode characteristics							
Continuous source-drain diode current	Is	T _C =25°C			-1.3	А	
Pulse diode forward current ^a	I _{SM}				-10		
Body diode voltage	V_{SD}	I _S =-0.7A		-0.8	-1.2	V	

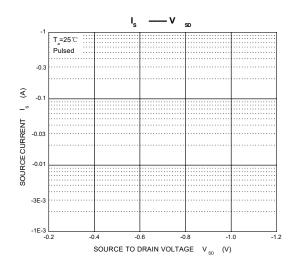
Notes:

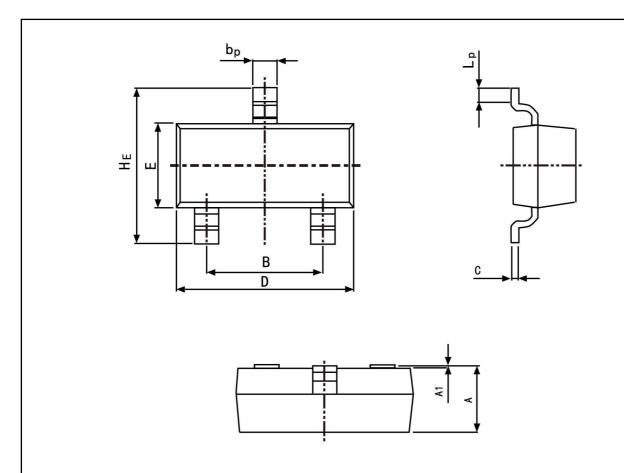

a.Pulse Test : Pulse Width < 300µs, Duty Cycle ≤2%.


b.Guaranteed by design, not subject to production testing.






Typical Characteristics



PACKAGE OUTLINE

Plastic surface mounted package; 3 leads

SOT-23

Symbol	Dimension in Millimeters			
Symbol	Min	Max		
А	0.95	1.40		
В	1.78	2.04		
bp	0.35	0.50		
С	0.08	0.19		
D	2.70	3.10		
E	1.20	1.65		
HE	2.20	3.00		
A1	0.100	0.013		
Lp	0.20	0.50		

IMPORTANT NOTICE

are registered trademarks of SXSEMI Electronics Co., Ltd and SXSEMI (SXSEMI) , SXSEMI reserves the right to make changes without further notice to any products herein. SXSEMI makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SXSEMI assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SXSEMIdata sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SXSEMI does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.